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27 nov ’24 Following “Teddy”’s advice, made closure expressed implicitly via the range of *; added definition

of Abelian groups and section for generators and element order.

20 nov 24 Added “direct products”, preparing for homo-/isomorphism and interesting examples.

18 nov ’24 Started project as a complementary exercise for the Group Theory lesson on Brilliant.org.
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1 Group “Axioms”

Definition 1.1 (Group). Given set GG and operation * : G X G — G, we say “G is a group under *” if and only
if it has all of associativity, identity, and invertibility.

Vf,9,h € G, (fxg)xh=fx(gxh) (G.Assoc)
JdeeG VgeG, exg=gxe=g (G.Ip)
Vge G Afed, fxg=gxf=e (G.Inv)

Note 1.2. A few observations about 1.1:

1. G.Ib is equivalent to demanding the existence of both left and right identities; uniqueness is derived.
given Jde,e’ € G Vge G, eg=ge' =g
then e=ee’ =¢

2. Similarly, G.INv follows existing both left and right inverses per g € G, assuming G.Assoc and G.Ip.
given VYge G 3If,f €G, fg=gf =e¢
then f=f(gf)=(fo)f =F

Definition 1.3 (Order of a group). The order of a finite group G is exactly order G = |G|.

Exercise 1.4 (Commonly used groups). Show that these are indeed groups; how “big” are they?

D, Rotations / reflections of n-gons. S, Permutations of a size-n set.
Z,,Z/nZ | {0...n— 1)} and Z under (+) mod n. z {a€Z,|a Ll n}under (x) mod n.
7Z,Q,R,C | (under +) Q*,R*,C* | (with 0 removed, under x)

(these are used a lot.)

Definition 1.5 (Direct products). With groups F', GG, define the direct product as “cartesian product with a
mapped operator”: (Note that all three occurrences of * are actually different operators.)

FxG=A{(f.9):feF,geG};
(fL9) = (f,9")=(f+f9%9).
Corollary 1.5.1 (F' x (’s are groups). The identity is (e, e.;) and the inverse of (f,g)is (f~',g71). N

Definition 1.6 (Abelian Groups). Just gonna throw this here cuz the definition itself is fairly simple. An Abelian
group G is a group that also observes commutativity for all its elements,

G Abelian iff. Vg,¢9' € G, g9’ = ¢'g
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2 Subgroups

Definition 2.1 (Subgroup relationship <). Literally, “subset that is also a group (under the same *).”
H < Gifft. G,Hgroup NHC G

Note that this requires the range of * restricted to H x H to be H itself.

Theorem 2.2 (Shared identity). Given H < G group and the identities e € G, e’ € H, thene = ¢’.

Proof.  From the assumption, fix any h € H, then also h € G; thus eh = h = ¢’h.
Let (-)! denote inverse in G, then ehh~'e’ " = e, but also ehh 'e’ " =¢’,s0e = €. [

Corollary 2.2.1 (Shared inverse). Given H < G group, f,h € H,g € G st. hf = e = fg, then h = g. This is
done by an argument similar to 1.2. ]
Note that I didn’t cite 1.2 for shared identity, because that requires knowing the identity e € G is an element of
H — which is sorta shown via e = ¢’ € H, leading to cyclic argument.

Theorem 2.3 (Subgroup test). Given nonempty H C G group, the following is sufficient to show H < G:
1. His closed under %, ie. Vg,h € H, gx h € H.
2. H is closed under ((.’s) inversion, i.e. Vh € H Vh/ € G st. hh' = hh=¢, h’ € H.

Proof.  To show (1.) and (2.) are sufficient, we assume both and show H group; once shown, H < G follows
from H C G by the definition of subgroups.

From (1.) follows the range of * restricted to H x H is H; associativity in H is implied by associativity in G;
once we show that e € H, it’ll also follow that e is the identity in H, then from (2.) we’ll also have invertibility
of H.

To show e € H: pick any h € H since H # (), then by (2.) we have h’ € H s.t. hh' = e, then by (1.) we have
ec H. |
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3 Cosets & Langrange’s Theorem

Definition 3.1 (Left and right cosets). Given groups H < G and g € G, the cosets of H under G about g are
gH ={gh: h € H} (Co.L)
Hg={hg:he H} (Co.R)

Corollary 3.1.1 (The gH'’s are “same-sized”). Given H < G group, Vg € G, H <> gH.

The reason? From invertibility in G, (h € H) h +— gh has to be a bijection. ]

This also applies to right cosets by a similar argument. Note that “same-sized” is in quotes since G, H may not
be finite, but the bijection argument still applies.

Lemma 3.1.2 (The gH’s partition the group). With H < G group, let’s define a “same-coset” relation R for
9,9 € G by requiring they share a factor f: (we’ll just do the left factor here; the right factor is similar.)

gRg iff. 3f €G, 9,9 € fH
We want to show that I? is an equivalence relation.

Proof.  First, we would want to expand on the RHS of the iff by Co.L:

Vf,g€ G, (g€ fH < 3Jhe€ H, g= fh)

Reflexivity let f = g € G, then since e € H we have g = fe € fH, thusg R g.

Symmetry (the definition of R is symmetric, duh.) Suppose g,¢9" € G s.t. ¢ R ¢’, then we may pick an
feGst g,g € fH,so (obviously) ¢’, g € fH, therefore ¢’ R g.

Transitivity This is less obvious, and depends on showing ¢’ R ¢ = ¢’ € gH; once shown, for ¢’ R g and
g R ¢” (and by symmetry, g” R g), we can let f = g and derive ¢’,¢” € fH,thusg’ R g”.

Toshow g’ Rg = ¢’ € gH: pick f € G, h,h' € Hst. g= fhANg = fh/ andleth” = h™*h’ € H (by
invertibility and closure), then ¢’ = gh”, thus ¢’ € gH. [ |

Theorem 3.2 (Lagrange’s Theorem). Given finite groups H < G, |H| divides |G|.

Proof. From 3.1.1 and 3.1.2:

Gl= > [Sl= ) [|Hl=lcol(H)-|H|

Secol(H) Seco.l(H)

where co.l (H) = {gH : g € G} is finite (since G finite) and non-empty (since eH € co.l (H)); then our desired
result follows. |
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4 Generators & Element Order

Definition 4.1 (“Generate”). Given S C G group, the set generated by S is that produced by finite compositions
of the elements of S.

Corollary 4.1.1 (Generated Subgroup). The set generated by S C G is a subset of G implied by closure of
* : G X G — @, and is further a group iff. it contains all inverses of elements of S (as closure is implied by the
definition of “set of all finite compositions”). O

Corollary 4.1.2 (Subsets of finite groups generate subgroups). V.S C G finite group, let H be the set generated
by S, then H < G. Here we'll just show that Vg € S, ¢! € H and use the previous corollary for the rest:

Fix any g € S; from closure of * : G X G — @G, we have Vn € N,¢g" € G. Let A = {¢" : n € {0..|G|}},

then by the pigeon-hole principle In,m € {0.. |G|} ,n < m A g" = ¢g™; pick these n,m, then ¢ " = e, so
1_ 1

g =g . ]

Definition 4.2 (Element Order). Given g € G group that generates a subgroup of G, let order g be the minimum
ke Ntst gF=e.

m—n—

Corollary 4.2.1 (Element order divides finite group order). This follows from Lagrange’s and 4.1.2. ]
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5 OQuotient groups

Definition 5.1 (Normal subgroup). Given H < G group, H is normal under G iff. Vg € G, gH = Hg
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