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27 nov ’24 Following “Teddy”’s advice, made closure expressed implicitly via the range of ∗; added definition

of Abelian groups and section for generators and element order.

20 nov ’24 Added “direct products”, preparing for homo-/isomorphism and interesting examples.

18 nov ’24 Started project as a complementary exercise for the Group Theory lesson on Brilliant.org.
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1 Group “Axioms”

Definition 1.1 (Group). Given set 𝐺 and operation ∗ ∶ 𝐺 × 𝐺 → 𝐺, we say “𝐺 is a group under ∗” if and only

if it has all of associativity, identity, and invertibility.

∀𝑓, 𝑔, ℎ ∈ 𝐺, (𝑓 ∗ 𝑔) ∗ ℎ = 𝑓 ∗ (𝑔 ∗ ℎ) (G.Assoc)

∃!𝑒 ∈ 𝐺 ∀𝑔 ∈ 𝐺, 𝑒 ∗ 𝑔 = 𝑔 ∗ 𝑒 = 𝑔 (G.Id)

∀𝑔 ∈ 𝐺 ∃!𝑓 ∈ 𝐺, 𝑓 ∗ 𝑔 = 𝑔 ∗ 𝑓 = 𝑒 (G.Inv)

Note 1.2. A few observations about 1.1:

1. G.Id is equivalent to demanding the existence of both left and right identities; uniqueness is derived.

given ∃𝑒, 𝑒′ ∈ 𝐺 ∀𝑔 ∈ 𝐺, 𝑒𝑔 = 𝑔𝑒′ = 𝑔
then 𝑒 = 𝑒𝑒′ = 𝑒′

2. Similarly, G.Inv follows existing both left and right inverses per 𝑔 ∈ 𝐺, assuming G.Assoc and G.Id.

given ∀𝑔 ∈ 𝐺 ∃𝑓, 𝑓 ′ ∈ 𝐺, 𝑓𝑔 = 𝑔𝑓 ′ = 𝑒
then 𝑓 = 𝑓(𝑔𝑓 ′) = (𝑓𝑔)𝑓 ′ = 𝑓 ′

Definition 1.3 (Order of a group).The order of a finite group 𝐺 is exactly order 𝐺 = |𝐺|.

Exercise 1.4 (Commonly used groups). Show that these are indeed groups; how “big” are they?

𝐷𝑛 Rotations / reflections of 𝑛-gons. 𝑆𝑛 Permutations of a size-𝑛 set.

𝑍𝑛, ℤ/𝑛ℤ {0..(𝑛 − 1)} and ℤ under (+) mod 𝑛. 𝑍∗
𝑛 {𝑎 ∈ 𝑍𝑛 | 𝑎 ⟂ 𝑛} under (×) mod 𝑛.

ℤ, ℚ, ℝ, ℂ (under +) ℚ∗, ℝ∗, ℂ∗ (with 0 removed, under ×)

(these are used a lot.)

Definition 1.5 (Direct products).With groups 𝐹, 𝐺, define the direct product as “cartesian product with a

mapped operator”: (Note that all three occurrences of ∗ are actually different operators.)

𝐹 × 𝐺 = {(𝑓, 𝑔) ∶ 𝑓 ∈ 𝐹 , 𝑔 ∈ 𝐺} ;
(𝑓, 𝑔) ∗ (𝑓 ′, 𝑔′) = (𝑓 ∗ 𝑓 ′, 𝑔 ∗ 𝑔′) .

Corollary 1.5.1 (𝐹 × 𝐺’s are groups).The identity is (𝑒𝐹, 𝑒𝐺) and the inverse of (𝑓, 𝑔) is (𝑓−1, 𝑔−1).

Definition 1.6 (Abelian Groups). Just gonna throw this here cuz the definition itself is fairly simple. An Abelian

group 𝐺 is a group that also observes commutativity for all its elements,

𝐺 Abelian iff. ∀𝑔, 𝑔′ ∈ 𝐺, 𝑔𝑔′ = 𝑔′𝑔
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2 Subgroups

Definition 2.1 (Subgroup relationship ≤). Literally, “subset that is also a group (under the same ∗).”

𝐻 ≤ 𝐺 iff. 𝐺, 𝐻 group∗ ∧ 𝐻 ⊆ 𝐺

Note that this requires the range of ∗ restricted to 𝐻 × 𝐻 to be 𝐻 itself.

Theorem 2.2 (Shared identity). Given 𝐻 ≤ 𝐺 group and the identities 𝑒 ∈ 𝐺, 𝑒′ ∈ 𝐻, then 𝑒 = 𝑒′.

Proof. From the assumption, fix any ℎ ∈ 𝐻, then also ℎ ∈ 𝐺; thus 𝑒ℎ = ℎ = 𝑒′ℎ.
Let (⋅)−1 denote inverse in 𝐺, then 𝑒ℎℎ−1𝑒′−1 = 𝑒, but also 𝑒ℎℎ−1𝑒′−1 = 𝑒′, so 𝑒 = 𝑒′.

Corollary 2.2.1 (Shared inverse). Given 𝐻 ≤ 𝐺 group, 𝑓, ℎ ∈ 𝐻, 𝑔 ∈ 𝐺 s.t. ℎ𝑓 = 𝑒 = 𝑓𝑔, then ℎ = 𝑔. This is

done by an argument similar to 1.2.

Note that I didn’t cite 1.2 for shared identity, because that requires knowing the identity 𝑒 ∈ 𝐺 is an element of

𝐻 — which is sorta shown via 𝑒 = 𝑒′ ∈ 𝐻, leading to cyclic argument.

Theorem 2.3 (Subgroup test). Given nonempty 𝐻 ⊆ 𝐺 group, the following is sufficient to show 𝐻 ≤ 𝐺:

1. 𝐻 is closed under ∗, i.e. ∀𝑔, ℎ ∈ 𝐻, 𝑔 ∗ ℎ ∈ 𝐻.

2. 𝐻 is closed under (𝐺’s) inversion, i.e. ∀ℎ ∈ 𝐻 ∀ℎ′ ∈ 𝐺 s.t. ℎℎ′ = ℎ′ℎ = 𝑒, ℎ′ ∈ 𝐻.

Proof. To show (1.) and (2.) are sufficient, we assume both and show 𝐻 group; once shown, 𝐻 ≤ 𝐺 follows

from 𝐻 ⊆ 𝐺 by the definition of subgroups.

From (1.) follows the range of ∗ restricted to 𝐻 × 𝐻 is 𝐻; associativity in 𝐻 is implied by associativity in 𝐺;

once we show that 𝑒 ∈ 𝐻, it’ll also follow that 𝑒 is the identity in 𝐻, then from (2.) we’ll also have invertibility

of 𝐻.

To show 𝑒 ∈ 𝐻: pick any ℎ ∈ 𝐻 since 𝐻 ≠ ∅, then by (2.) we have ℎ′ ∈ 𝐻 s.t. ℎℎ′ = 𝑒, then by (1.) we have

𝑒 ∈ 𝐻.
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3 Cosets & Langrange’s Theorem

Definition 3.1 (Left and right cosets). Given groups 𝐻 ≤ 𝐺 and 𝑔 ∈ 𝐺, the cosets of 𝐻 under 𝐺 about 𝑔 are

𝑔𝐻 = {𝑔ℎ ∶ ℎ ∈ 𝐻} (Co.L)

𝐻𝑔 = {ℎ𝑔 ∶ ℎ ∈ 𝐻} (Co.R)

Corollary 3.1.1 (The 𝑔𝐻’s are “same-sized”). Given 𝐻 ≤ 𝐺 group, ∀𝑔 ∈ 𝐺, 𝐻 ↔ 𝑔𝐻.

The reason? From invertibility in 𝐺, (ℎ ∈ 𝐻) ℎ ↦ 𝑔ℎ has to be a bijection.

This also applies to right cosets by a similar argument. Note that “same-sized” is in quotes since 𝐺, 𝐻 may not

be finite, but the bijection argument still applies.

Lemma 3.1.2 (The 𝑔𝐻’s partition the group).With 𝐻 ≤ 𝐺 group, let’s define a “same-coset” relation 𝑅 for

𝑔, 𝑔′ ∈ 𝐺 by requiring they share a factor 𝑓: (we’ll just do the left factor here; the right factor is similar.)

𝑔 𝑅 𝑔′ iff. ∃𝑓 ∈ 𝐺, 𝑔, 𝑔′ ∈ 𝑓𝐻

We want to show that 𝑅 is an equivalence relation.

Proof. First, we would want to expand on the RHS of the iff by Co.L:

∀𝑓, 𝑔 ∈ 𝐺, (𝑔 ∈ 𝑓𝐻 ⟺ ∃ℎ ∈ 𝐻, 𝑔 = 𝑓ℎ)

Reflexivity let 𝑓 = 𝑔 ∈ 𝐺, then since 𝑒 ∈ 𝐻 we have 𝑔 = 𝑓𝑒 ∈ 𝑓𝐻, thus 𝑔 𝑅 𝑔.

Symmetry (the definition of 𝑅 is symmetric, duh.) Suppose 𝑔, 𝑔′ ∈ 𝐺 s.t. 𝑔 𝑅 𝑔′, then we may pick an

𝑓 ∈ 𝐺 s.t. 𝑔, 𝑔′ ∈ 𝑓𝐻, so (obviously) 𝑔′, 𝑔 ∈ 𝑓𝐻, therefore 𝑔′ 𝑅 𝑔.

Transitivity This is less obvious, and depends on showing 𝑔′ 𝑅 𝑔 ⟹ 𝑔′ ∈ 𝑔𝐻; once shown, for 𝑔′ 𝑅 𝑔 and

𝑔 𝑅 𝑔″ (and by symmetry, 𝑔″ 𝑅 𝑔), we can let 𝑓 = 𝑔 and derive 𝑔′, 𝑔″ ∈ 𝑓𝐻, thus 𝑔′ 𝑅 𝑔″.

To show 𝑔′ 𝑅 𝑔 ⟹ 𝑔′ ∈ 𝑔𝐻: pick 𝑓 ∈ 𝐺, ℎ, ℎ′ ∈ 𝐻 s.t. 𝑔 = 𝑓ℎ ∧ 𝑔′ = 𝑓ℎ′ and let ℎ″ = ℎ−1ℎ′ ∈ 𝐻 (by

invertibility and closure), then 𝑔′ = 𝑔ℎ″, thus 𝑔′ ∈ 𝑔𝐻.

Theorem 3.2 (Lagrange’s Theorem). Given finite groups 𝐻 ≤ 𝐺, |𝐻| divides |𝐺|.

Proof. From 3.1.1 and 3.1.2:

|𝐺| = ∑
𝑆∈co.l(𝐻)

|𝑆| = ∑
𝑆∈co.l(𝐻)

|𝐻| = |co.l (𝐻)| ⋅ |𝐻|

where co.l (𝐻) = {𝑔𝐻 ∶ 𝑔 ∈ 𝐺} is finite (since 𝐺 finite) and non-empty (since 𝑒𝐻 ∈ co.l (𝐻)); then our desired

result follows.
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4 Generators & Element Order

Definition 4.1 (“Generate”). Given 𝑆 ⊆ 𝐺 group, the set generated by 𝑆 is that produced by finite compositions

of the elements of 𝑆.

Corollary 4.1.1 (Generated Subgroup).The set generated by 𝑆 ⊆ 𝐺 is a subset of 𝐺 implied by closure of

∗ ∶ 𝐺 × 𝐺 → 𝐺, and is further a group iff. it contains all inverses of elements of 𝑆 (as closure is implied by the

definition of “set of all finite compositions”).

Corollary 4.1.2 (Subsets of finite groups generate subgroups). ∀𝑆 ⊆ 𝐺 finite group, let 𝐻 be the set generated

by 𝑆, then 𝐻 ≤ 𝐺. Here we’ll just show that ∀𝑔 ∈ 𝑆, 𝑔−1 ∈ 𝐻 and use the previous corollary for the rest:

Fix any 𝑔 ∈ 𝑆; from closure of ∗ ∶ 𝐺 × 𝐺 → 𝐺, we have ∀𝑛 ∈ ℕ, 𝑔𝑛 ∈ 𝐺. Let 𝐴 = {𝑔𝑛 ∶ 𝑛 ∈ {0.. |𝐺|}},
then by the pigeon-hole principle ∃𝑛, 𝑚 ∈ {0.. |𝐺|} , 𝑛 < 𝑚 ∧ 𝑔𝑛 = 𝑔𝑚; pick these 𝑛, 𝑚, then 𝑔𝑚−𝑛 = 𝑒, so
𝑔𝑚−𝑛−1 = 𝑔−1.

Definition 4.2 (Element Order). Given 𝑔 ∈ 𝐺 group that generates a subgroup of 𝐺, let order 𝑔 be the minimum

𝑘 ∈ ℕ+ s.t. 𝑔𝑘 = 𝑒.

Corollary 4.2.1 (Element order divides finite group order).This follows from Lagrange’s and 4.1.2.
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5 Quotient groups

Definition 5.1 (Normal subgroup). Given 𝐻 ≤ 𝐺 group, 𝐻 is normal under 𝐺 iff. ∀𝑔 ∈ 𝐺, 𝑔𝐻 = 𝐻𝑔
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