Contents

1	Group "Axioms"	2
2	Subgroups	3
3	Cosets & Langrange's Theorem	4
4	Generators & Element Order	5
5	Quotient groups	6

Change logs

27 nov '24 Following "Teddy"'s advice, made *closure* expressed implicitly via the range of *; added definition of Abelian groups and section for generators and element order.

20 nov '24 Added "direct products", preparing for homo-/isomorphism and interesting examples.

18 nov '24 Started project as a complementary exercise for the Group Theory lesson on Brilliant.org.

1 Group "Axioms"

Definition 1.1 (Group). Given set G and operation $*: G \times G \to G$, we say "G is a group under *" if and only if it has all of **associativity**, **identity**, and **invertibility**.

$$\forall f, g, h \in G, \quad (f * g) * h = f * (g * h) \tag{G.Assoc}$$

$$\exists ! e \in G \quad \forall g \in G, \quad e * g = g * e = g \tag{G.Id}$$

$$\forall g \in G \quad \exists! f \in G, \quad f * g = g * f = e$$
 (G.Inv)

Note 1.2. A few observations about 1.1:

- 1. G.ID is equivalent to demanding the existence of both left and right identities; uniqueness is derived. given $\exists e, e' \in G \quad \forall g \in G, \quad eg = ge' = g$ then e = ee' = e'
- 2. Similarly, G.Inv follows existing both left and right inverses per $g \in G$, assuming G.Assoc and G.In. given $\forall g \in G \ \exists f, f' \in G, \ fg = gf' = e$ then f = f(gf') = (fg)f' = f'

Definition 1.3 (Order of a group). The order of a *finite* group G is exactly order G = |G|.

Exercise 1.4 (Commonly used groups). Show that these are indeed groups; how "big" are they?

$$\begin{array}{c|c} D_n & \text{Rotations / reflections of n-gons.} \\ Z_n, \mathbb{Z}/n\mathbb{Z} & \{0..(n-1)\} \text{ and } \mathbb{Z} \text{ under } (+) \mod n. \end{array} \begin{array}{c|c} S_n & \text{Permutations of a size-n set.} \\ Z_n^* & \{a \in Z_n \mid a \perp n\} \text{ under } (\times) \mod n. \\ \mathbb{Q}^*, \mathbb{R}^*, \mathbb{C}^* & \text{(with 0 removed, under \times)} \end{array}$$

(these are used a *lot*.)

Definition 1.5 (Direct products). With groups F, G, define the *direct product* as "cartesian product with a mapped operator": (Note that all three occurrences of * are actually different operators.)

$$F \times G = \{(f,g): f \in F, g \in G\} \ ;$$

$$(f,g)*(f',g') = (f*f',g*g') \, .$$

Corollary 1.5.1 ($F \times G$'s are groups). The identity is (e_F, e_G) and the inverse of (f, g) is (f^{-1}, g^{-1}) .

Definition 1.6 (Abelian Groups). Just gonna throw this here cuz the definition itself is fairly simple. An Abelian group G is a group that also observes commutativity for all its elements,

$$G$$
 Abelian iff. $\forall g,g'\in G,\,gg'=g'g$

2 Subgroups

Definition 2.1 (Subgroup relationship \leq). Literally, "subset that is also a group (under the same *)."

$$H \leq G$$
 iff. G, H group, $\wedge H \subseteq G$

Note that this requires the range of * restricted to $H \times H$ to be H itself.

Theorem 2.2 (Shared identity). Given $H \leq G$ group and the identities $e \in G$, $e' \in H$, then e = e'.

Proof. From the assumption, fix any $h \in H$, then also $h \in G$; thus eh = h = e'h. Let $(\cdot)^{-1}$ denote inverse in G, then $ehh^{-1}e'^{-1} = e$, but also $ehh^{-1}e'^{-1} = e'$, so e = e'.

Corollary 2.2.1 (Shared inverse). Given $H \leq G$ group, $f, h \in H, g \in G$ s.t. hf = e = fg, then h = g. This is done by an argument similar to 1.2.

Note that I didn't cite 1.2 for shared identity, because that requires knowing the identity $e \in G$ is an element of H — which is sorta shown via $e = e' \in H$, leading to cyclic argument.

Theorem 2.3 (Subgroup test). Given nonempty $H \subseteq G$ group, the following is sufficient to show $H \subseteq G$:

- 1. H is closed under *, i.e. $\forall g, h \in H, g * h \in H$.
- 2. *H* is closed under (*G*'s) inversion, i.e. $\forall h \in H \ \forall h' \in G$ s.t. $hh' = h'h = e, h' \in H$.

Proof. To show (1.) and (2.) are sufficient, we assume both and show H group; once shown, $H \leq G$ follows from $H \subseteq G$ by the definition of subgroups.

From (1.) follows the range of * restricted to $H \times H$ is H; associativity in H is implied by associativity in G; once we show that $e \in H$, it'll also follow that e is the identity in H, then from (2.) we'll also have invertibility of H.

To show $e \in H$: pick any $h \in H$ since $H \neq \emptyset$, then by (2.) we have $h' \in H$ s.t. hh' = e, then by (1.) we have $e \in H$.

3 Cosets & Langrange's Theorem

Definition 3.1 (Left and right cosets). Given groups $H \leq G$ and $g \in G$, the cosets of H under G about g are

$$gH = \{gh : h \in H\} \tag{Co.L}$$

$$Hg = \{ hg : h \in H \} \tag{Co.R}$$

Corollary 3.1.1 (The gH's are "same-sized"). Given $H \leq G$ group, $\forall g \in G, H \leftrightarrow gH$.

The reason? From invertibility in G, $(h \in H) h \mapsto gh$ has to be a bijection.

This also applies to right cosets by a similar argument. Note that "same-sized" is in quotes since G, H may not be finite, but the bijection argument still applies.

Lemma 3.1.2 (The gH's partition the group). With $H \leq G$ group, let's define a "same-coset" relation R for $g, g' \in G$ by requiring they share a factor f: (we'll just do the left factor here; the right factor is similar.)

$$g R g' \text{ iff. } \exists f \in G, g, g' \in fH$$

We want to show that R is an equivalence relation.

Proof. First, we would want to expand on the RHS of the iff by Co.L:

$$\forall f, g \in G, (g \in fH \iff \exists h \in H, g = fh)$$

Reflexivity let $f=g\in G$, then since $e\in H$ we have $g=fe\in fH$, thus $g\mathrel{R} g$.

Symmetry (the definition of R is symmetric, duh.) Suppose $g, g' \in G$ s.t. g R g', then we may pick an $f \in G$ s.t. $g, g' \in fH$, so (obviously) $g', g \in fH$, therefore g' R g.

Transitivity This is less obvious, and depends on showing $g' R g \implies g' \in gH$; once shown, for g' R g and g R g'' (and by symmetry, g'' R g), we can let f = g and derive $g', g'' \in fH$, thus g' R g''.

To show $g' \ R \ g \implies g' \in gH$: pick $f \in G$, $h, h' \in H$ s.t. $g = fh \land g' = fh'$ and let $h'' = h^{-1}h' \in H$ (by invertibility and closure), then g' = gh'', thus $g' \in gH$.

Theorem 3.2 (Lagrange's Theorem). Given finite groups $H \leq G$, |H| divides |G|.

Proof. From 3.1.1 and 3.1.2:

$$|G| = \sum_{S \in \operatorname{co.l}(H)} |S| = \sum_{S \in \operatorname{co.l}(H)} |H| = |\operatorname{co.l}\left(H\right)| \cdot |H|$$

where $\operatorname{co.l}(H) = \{gH : g \in G\}$ is finite (since G finite) and non-empty (since $eH \in \operatorname{co.l}(H)$); then our desired result follows.

4 Generators & Element Order

Definition 4.1 ("Generate"). Given $S \subseteq G$ group, the set *generated* by S is that produced by finite compositions of the elements of S.

Corollary 4.1.1 (Generated Subgroup). The set generated by $S \subseteq G$ is a subset of G implied by closure of $*: G \times G \to G$, and is further a group iff. it contains all inverses of elements of S (as closure is implied by the definition of "set of all finite compositions").

Corollary 4.1.2 (Subsets of finite groups generate subgroups). $\forall S \subseteq G$ finite group, let H be the set generated by S, then $H \leq G$. Here we'll just show that $\forall g \in S, g^{-1} \in H$ and use the previous corollary for the rest:

Fix any $g \in S$; from closure of $*: G \times G \to G$, we have $\forall n \in \mathbb{N}, g^n \in G$. Let $A = \{g^n : n \in \{0.. |G|\}\}$, then by the pigeon-hole principle $\exists n, m \in \{0.. |G|\}$, $n < m \land g^n = g^m$; pick these n, m, then $g^{m-n} = e$, so $g^{m-n-1} = g^{-1}$.

Definition 4.2 (Element Order). Given $g \in G$ group that generates a subgroup of G, let order g be the minimum $k \in \mathbb{N}^+$ s.t. $g^k = e$.

Corollary 4.2.1 (Element order divides finite group order). This follows from Lagrange's and 4.1.2. □

5 Quotient groups

Definition 5.1 (Normal subgroup). Given $H \leq G$ group, H is normal under G iff. $\forall g \in G, gH = Hg$