Contents

Change logs

27 nov '24 Following "Teddy"'s advice, made closure expressed implicitly via the range of *; added definition of Abelian groups and section for generators and element order.

20 nov '24 Added "direct products", preparing for homo-/isomorphism and interesting examples.

18 nov '24 Started project as a complementary exercise for the Group Theory lesson on Brilliant.org.

1 Group "Axioms"

Definition 1.1 (Group). Given set G and operation $* : G \times G \to G$, we say "G is a group under $*$ " if and only if it has all of associativity, identity, and invertibility.

$$
\forall f, g, h \in G, \quad (f * g) * h = f * (g * h)
$$
\n(G. Assoc)

$$
\exists! e \in G \quad \forall g \in G, \quad e * g = g * e = g \tag{G.ID}
$$

$$
\forall g \in G \quad \exists! f \in G, \quad f * g = g * f = e \tag{G.Inv}
$$

Note 1.2. A few observations about [1.1:](#page-1-1)

- 1. G.In is equivalent to demanding the existence of both left and right identities; uniqueness is derived. given $\exists e, e' \in G \quad \forall q \in G, \quad eq = qe' = q$ then $e = ee' = e'$
- 2. Similarly, [G.Inv](#page-1-3) follows existing both left and right inverses per $g \in G$, assuming [G.Assoc](#page-1-4) and G.ID. given $\forall g \in G \quad \exists f, f' \in G, \quad fg = gf' = e$ then $f = f(gf') = (fg)f' = f'$

Definition 1.3 (Order of a group). The order of a *finite* group G is exactly order $G = |G|$.

Exercise 1.4 (Commonly used groups). Show that these are indeed groups; how "big" are they?

$$
\begin{array}{c} D_n \\ Z_n, \mathbb{Z}/n\mathbb{Z} \\ \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C} \end{array} \bigg| \begin{array}{c} \text{Rotations } / \text{ reflections of } n\text{-gons.} \\ \{0..(n-1)\} \text{ and } \mathbb{Z} \text{ under } (+) \mod n. \\ \mathbb{Z} \text{ under } +) \end{array} \bigg| \begin{array}{c} S_n \\ Z_n^* \\ \mathbb{Q}^*, \mathbb{R}^*, \mathbb{C}^* \\ \mathbb{Q}^*, \mathbb{R}^*, \mathbb{C}^* \end{array} \bigg| \begin{array}{c} \text{Permutations of a size-}n \text{ set.} \\ \{a \in Z_n \mid a \perp n\} \text{ under } (\times) \mod n. \\ \text{(with } 0 \text{ removed, under } \times) \end{array}
$$

(these are used a lot.)

Definition 1.5 (Direct products). With groups F, G , define the *direct product* as "cartesian product with a mapped operator": (Note that all three occurrences of ∗ are actually different operators.)

$$
F \times G = \{ (f, g) : f \in F, g \in G \} ;
$$

(f, g) * (f', g') = (f * f', g * g').

Corollary 1.5.1 ($F \times G$'s are groups). The identity is (e_F, e_G) and the inverse of (f, g) is (f^{-1}, g^{-1}) . \Box

Definition 1.6 (Abelian Groups). Just gonna throw this here cuz the definition itself is fairly simple. An Abelian group G is a group that also observes commutativity for all its elements,

$$
G \text{ Abelian iff. } \forall g, g' \in G, \, gg' = g'g
$$

2 Subgroups

Definition 2.1 (Subgroup relationship \leq). Literally, "subset that is also a group (under the same *)."

$$
H \leq G \text{ iff. } G, H \text{ group}_* \wedge H \subseteq G
$$

Note that this requires the range of $*$ restricted to $H \times H$ to be H itself.

Theorem 2.2 (Shared identity). Given $H \leq G$ group and the identities $e \in G, e' \in H$, then $e = e'$.

Proof. From the assumption, fix any $h \in H$, then also $h \in G$; thus $eh = h = e'h$. Let $\ddot{(\cdot)}^{-1}$ denote inverse in G, then $ehh^{-1}e'^{-1} = e$, but also $ehh^{-1}e'^{-1} = e'$, so $e = e'$.

Corollary 2.2.1 (Shared inverse). Given $H \leq G$ group, $f, h \in H, g \in G$ s.t. $hf = e = fg$, then $h = g$. This is done by an argument similar to [1.2.](#page-1-5) \Box

Note that I didn't cite [1.2](#page-1-5) for shared identity, because that requires knowing the identity $e \in G$ is an element of H – which is sorta shown via $e = e' \in H$, leading to cyclic argument.

Theorem 2.3 (Subgroup test). Given nonempty $H \subseteq G$ group, the following is sufficient to show $H \leq G$:

- 1. *H* is closed under *, i.e. $\forall g, h \in H, g * h \in H$.
- 2. H is closed under $(G's)$ inversion, i.e. $\forall h \in H$ $\forall h' \in G$ s.t. $hh' = h'h = e$, $h' \in H$.

Proof. To show (1.) and (2.) are sufficient, we assume both and show H group; once shown, $H \leq G$ follows from $H \subset G$ by the definition of subgroups.

From (1.) follows the range of $*$ restricted to $H \times H$ is H ; associativity in H is implied by associativity in G ; once we show that $e \in H$, it'll also follow that e is the identity in H, then from (2.) we'll also have invertibility of H .

To show $e \in H$: pick any $h \in H$ since $H \neq \emptyset$, then by (2.) we have $h' \in H$ s.t. $hh' = e$, then by (1.) we have $e \in H$.

 \Box

3 Cosets & Langrange's Theorem

Definition 3.1 (Left and right cosets). Given groups $H \leq G$ and $g \in G$, the cosets of H under G about g are

$$
gH = \{gh : h \in H\}
$$
 (Co.L)

$$
Hg = \{hg : h \in H\}
$$
 (Co.R)

Corollary 3.1.1 (The gH 's are "same-sized"). Given $H \leq G$ group, $\forall g \in G$, $H \leftrightarrow gH$.

The reason? From invertibility in G , $(h \in H)$ $h \mapsto gh$ has to be a bijection.

This also applies to right cosets by a similar argument. Note that "same-sized" is in quotes since G, H may not be finite, but the bijection argument still applies.

Lemma 3.1.2 (The gH's partition the group). With $H \leq G$ group, let's define a "same-coset" relation R for $q, q' \in G$ by requiring they share a factor f: (we'll just do the left factor here; the right factor is similar.)

$$
g R g' \text{ iff. } \exists f \in G, g, g' \in fH
$$

We want to show that R is an equivalence relation.

Proof. First, we would want to expand on the RHS of the iff by [Co.L:](#page-3-1)

$$
\forall f, g \in G, \ (g \in fH \iff \exists h \in H, \ g = fh)
$$

Reflexivity let $f = g \in G$, then since $e \in H$ we have $g = fe \in fH$, thus g R g.

Symmetry (the definition of R is symmetric, duh.) Suppose $g,g' \,\in\, G$ s.t. g R g' , then we may pick an $f \in G$ s.t. $g, g' \in fH$, so (obviously) $g', g \in fH$, therefore $g' R g$.

Transitivity This is less obvious, and depends on showing $g' \mathrel R g \implies g' \in gH$; once shown, for $g' \mathrel R g$ and $\overline{g\mathrel{R} g''}$ (and by symmetry, $g''\mathrel{R} g$), we can let $f=g$ and derive $g',g''\in fH,$ thus $g'\mathrel{R} g''.$

To show $g' \mathrel{R} g \implies g' \in gH$: pick $f \in G, \, h,h' \in H$ s.t. $g = fh \wedge g' = fh'$ and let $h'' = h^{-1}h' \in H$ (by invertibility and closure), then $g' = gh''$, thus $g' \in gH$.

Theorem 3.2 (Lagrange's Theorem). Given finite groups $H \leq G$, |H| divides |G|.

Proof. From [3.1.1](#page-3-2) and [3.1.2:](#page-3-3)

$$
|G|=\sum_{S\in\mathrm{col}(H)}|S|=\sum_{S\in\mathrm{col}(H)}|H|=|\mathrm{col}\,(H)|\cdot|H|
$$

where co.l(H) = { $gH : g \in G$ } is finite (since G finite) and non-empty (since $eH \in$ co.l(H)); then our desired result follows.

4 Generators & Element Order

Definition 4.1 ("Generate"). Given $S \subseteq G$ group, the set generated by S is that produced by finite compositions of the elements of S .

Corollary 4.1.1 (Generated Subgroup). The set generated by $S \subseteq G$ is a subset of G implied by closure of $* : G \times G \to G$, and is further a group iff. it contains all inverses of elements of S (as closure is implied by the definition of "set of all finite compositions"). \Box

Corollary 4.1.2 (Subsets of finite groups generate subgroups). $\forall S \subseteq G$ finite group, let H be the set generated by S, then $H \leq G$. Here we'll just show that $\forall g \in S, g^{-1} \in H$ and use the previous corollary for the rest:

Fix any $g \in S$; from closure of $* : G \times G \to G$, we have $\forall n \in \mathbb{N}, g^n \in G$. Let $A = \{g^n : n \in \{0, |G|\}\},\$ then by the pigeon-hole principle $\exists n, m \in \{0..|G|\}$, $n < m \wedge g^n = g^m$; pick these n, m , then $g^{m-n} = e$, so $g^{m-n-1} = g^{-1}.$ \Box

Definition 4.2 (Element Order). Given $g \in G$ group that generates a subgroup of G, let order g be the minimum $k \in \mathbb{N}^+$ s.t. $g^k = e$.

Corollary 4.2.1 (Element order divides finite group order). This follows from Lagrange's and [4.1.2.](#page-4-1) \Box

5 Quotient groups

Definition 5.1 (Normal subgroup). Given $H \leq G$ group, H is normal under G iff. $\forall g \in G$, $gH = Hg$